Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Dissolved organic matter (DOM) is the foundation of the microbial loop and plays an important role in estuarine water quality and ecosystem metabolism. Because estuaries are influenced by DOM with different sources and composition, changing hydrologic regimes, and diverse microbial community assemblages, the biological fate of DOM (i.e., microbial degradation) differs across spatiotemporal scales and between DOM pools. To better understand controls on DOM degradation, we characterized the biogeochemical and physical conditions of the York River Estuary (YRE), a sub-estuary of the Chesapeake Bay in southeast Virginia (USA), during October 2018 and February, April, and July 2019. We then evaluated how these conditions influenced the degradation of dissolved organic carbon (DOC) and nitrogen (DON) and chromophoric dissolved organic matter (CDOM) by conducting parallel dark incubations of surface water collected along the YRE. Compared to other sampling dates, DOC reactivity (ΔDOC (%)) was over two-fold higher in October when freshwater discharge was lower, temperatures were warmer, and autochthonous, aquatic sources of DOC dominated. ΔDOC (%) was near zero when allochthonous, terrestrial sources of DOC were more abundant and when temperatures were cooler during higher discharge periods in February when precipitation in the Chesapeake Bay region was anomalously high. DON was up to six times less reactive than DOC and was sometimes produced during the incubations whereas ΔCDOM (%) was highly variable between sampling periods. Like ΔDOC (%), spatiotemporal patterns in ΔDON (%) were controlled primarily by hydrology and DOM source and composition. Our results show that higher freshwater discharge associated with prolonged wet periods decreased estuarine flushing time and increased the delivery of allochthonous DOM derived from terrestrial sources into coastal waters, resulting in lower rates of DOM degradation especially under cool conditions. While these findings provide evidence for seasonal variation in DOM degradation, shifting environmental conditions (e.g., increasing temperatures and precipitation) due to climate change may also have interactive effects on the magnitude and composition of DOM exported to estuaries and its subsequent reactivity.more » « less
-
Abstract Subterranean estuaries (STEs) form in the subsurface where fresh groundwater and seawater meet and mix. Subterranean estuaries support a variety of biogeochemical processes including those transforming nitrogen (N). Groundwater is often enriched with dissolved inorganic nitrogen (DIN), and transformations in the STE determine the fate of that DIN, which may be discharged to coastal waters. Nitrification oxidizes ammonium (NH4+) to nitrate, making DIN available for N removal via denitrification. We measured nitrification at an STE, in Virginia, USA using in situ and ex situ methods including conservative mixing models informed by in situ geochemical profiles, an in situ experiment with15NH4+tracer injection, and ex situ sediment slurry incubations with15NH4+tracer addition. All methods indicated nitrification in the STE, but the ex situ sediment slurries revealed higher rates than both the in situ tracr experiment and mixing model estimations. Nitrification rates ranged 55.0–183.16 μmol N m−2 d−1based on mixing models, 94.2–225 μmol N m−2 d−1in the in situ tracer experiment, and 36.6–109 μmol N m−2 d−1slurry incubations. The in situ tracer experiment revealed higher rates and spatial variation not captured by the other methods. The geochemical complexity of the STE makes it difficult to replicate in situ conditions with incubations and calculations based on chemical profiles integrate over longer timescales, therefore, in situ approaches may best quantify transformation rates. Our data suggest that STE nitrification produces NO3−, altering the DIN pool discharged to overlying water via submarine groundwater discharge.more » « less
-
Abstract Sandy sediment beaches covering 70% of non‐ice‐covered coastlines are important ecosystems for nutrient cycling along the land‐ocean continuum. Subterranean estuaries (STEs), where groundwater and seawater meet, are hotspots for biogeochemical cycling within sandy beaches. The STE microbial community facilitates biogeochemical reactions, determining the fate of nutrients, including nitrogen (N), supplied by groundwater. Nitrification influences the fate of N, oxidising reduced dissolved inorganic nitrogen (DIN), making it available for N removal. We used metabarcoding of 16S rRNA genes and quantitative PCR (qPCR) of ammonia monooxygenase (amoA) genes to characterise spatial and temporal variation in STE microbial community structure and nitrifying organisms. We examined nitrifier diversity, distribution and abundance to determine how geochemical measurements influenced their distribution in STEs. Sediment microbial communities varied with depth (p‐value = 0.001) and followed geochemical gradients in dissolved oxygen (DO), salinity, pH, dissolved inorganic carbon and DIN. Genetic potential for nitrification in the STE was evidenced by qPCR quantification ofamoAgenes. Ammonia oxidiser abundance was best explained by DIN, DO and pH. Our results suggest that geochemical gradients are tightly linked to STE community composition and nitrifier abundance, which are important to determine the fate and transport of groundwater‐derived nutrients to coastal waters.more » « less
-
Abstract Terrestrial groundwater travels through subterranean estuaries before reaching the sea. Groundwater‐derived nutrients drive coastal water quality, primary production, and eutrophication. We determined how dissolved inorganic nitrogen (DIN), dissolved inorganic phosphorus (DIP), and dissolved organic nitrogen (DON) are transformed within subterranean estuaries and estimated submarine groundwater discharge (SGD) nutrient loads compiling > 10,000 groundwater samples from 216 sites worldwide. Nutrients exhibited complex, nonconservative behavior in subterranean estuaries. Fresh groundwater DIN and DIP are usually produced, and DON is consumed during transport. Median total SGD (saline and fresh) fluxes globally were 5.4, 2.6, and 0.18 Tmol yr−1for DIN, DON, and DIP, respectively. Despite large natural variability, total SGD fluxes likely exceed global riverine nutrient export. Fresh SGD is a small source of new nutrients, but saline SGD is an important source of mostly recycled nutrients. Nutrients exported via SGD via subterranean estuaries are critical to coastal biogeochemistry and a significant nutrient source to the oceans.more » « less
An official website of the United States government
